GRAZ-NP 64-

АКАДЕМИЯ НАУК СССР

ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ и ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Том 47

(Отдельный оттиск)

12

MOCKBA . 1964

Журнал экспериментальной и теоретической физики

1964

Вып. 6(12)

ИССЛЕДОВАНИЕ ГАЛЬВАНОМАГНИТНЫХ СВОЙСТВ СОЕДИНЕНИЯ Мп_{1,88}Сг_{0,12}Sb ПРИ ПРЕВРАЩЕНИИ АНТИФЕРРОМАГНЕТИЗМ — ФЕРРОМАГНЕТИЗМ

H. П. Гражданкина N. P. GRAZHDANKINA

Описываются результаты экспериментального исследования температурных зависимостей электрического сопротивления, удельной термоэлектродвижущей силы, а также температурных и полевых зависимостей гальваномагнитного эффекта $\Delta R / R$ и эффекта Холла, измеренных на монокристаллических образцах соединения $Mn_{1,88}Cr_{0,12}Sb$ в области температур 77—380° К, включающих температуру T_s перехода антиферромагнетизм — ферромагнетизм.

Установлено, что при превращении все перечисленные характеристики испытывают резкое изменение. По смещению максимума эффекта $\Delta R / R$ с полем определено значение $dT_s / dH = (-0.33 \pm 0.04) \cdot 10^{-3} \ zpa\partial \cdot 0e^{-1}$. Разный характер температурных и полевых зависимостей гальваномагнитных эффектов в ферро- и антиферромагнитной областях при одном и том же типе кристаллической структуры указывает на существенное значение для этих эффектов магнитной структуры вещества.

Введение

Соединения, имеющие общую формулу Mn_{2-x}Cr_xSb, при изменении температуры испытывают два магнитных фазовых перехода. Обладая антиферромагнитными свойствами при низких температурах, они переходят при повышении температуры в точке T_s в ферромагнитное состояние, которое, в свою очередь, разрушается при дальнейшем повышении температуры в точке Θ_{f} [1]. Исследования этих соединений в сильных импульсных магнитных полях показали, что антиферромагнитное состояние может быть. разрушено достаточно сильными магнитными полями, превышающими нокоторое пороговое значение H_n , зависящее от температуры [2]. На основании рентгенографических и нейтронографических исследований [³] было установлено, что переход антиферромагнетизм — ферромагнетизм, вызванный температурой в точке T_s, приводит к изменению только магнитной структуры соединения и не сопровождается изменением кристаллографической симметрии решетки. Как выше, так и ниже температуры перехода решетка имеет тетрагональную симметрию типа P4 / nmm. В связи с этим исследование указанных соединений представляет интерес по меньшей мере в двух отношениях.

Во-первых, изменение при превращении только спиновой симметрии при неизменной симметрии кристаллической решетки дает возможноста исследовать вопрос о влиянии характера спинового упорядочения на электрические и гальваномагнитные свойства веществ.

Во-вторых, исследование перехода антиферромагнетизм — ферромагнетизм представляет самостоятельный интерес, так как несмотря на то, что в настоящее время такие переходы обнаружены в ряде соединений, сплавах и в большой группе редкоземельных металлов, природа этих переходов пока еще мало изучена.

В настоящей работе сообщаются данные о температурных зависимостях электрического сопротивления, удельной термоэлектродвижущей силы,

T. 47

а также температурных и полевых зависимостях намагниченности, гальваномагнитного эффекта $\Delta R / R$ и эффекта Холла, измеренных на монокристаллических образцах соединения Mn_{1,88}Cr_{0,12}Sb в области температур 77—380° K, включающей температуру перехода антиферромагнетизм ферромагнетизм $T_s = 319^{\circ}$ K.

Приготовление образцов и методика измерений

Монокристаллы соединения $Mn_{1,88}Cr_{0,12}Sb$ готовились следующим образом. Мелкоистолченные порошки химически чистых Mn, Cr и Sb^{1} тщательно перемешивались и прессовались в стержни размерами $50 \times 8 \times 7$ мм³. Прессованные стержни помещались в кварцевые ампулы, которые откачивались до высокого вакуума, наполнялись очищенным гелием, отпаивались и помещались в печь. Температура печи медленно повышалась до 700° С и в течение 6 час производилась выдержка при этой температуре. Затем температура повышалась до $1000-1050^{\circ}$ С, образец плавился и производилась кристаллизация расплава. С этой целью ампула вытягивалась из печи со скоростью 0,4 см/час в течение 10-11 час. Полученные сплавы подвергались рентгенографическому и микроструктурному фазовым анализам, которые показали наличие помимо основной фазы $Mn_{1,88}Cr_{0,12}Sb$ следов MnSb. Кристаллографические направления в монокристаллах определялись двумя путями: рентгенографически по методу Лауэ и магнитным — с помощью карданова со следотова.

Измерения изотерм намагниченности производились на маятниковых магнитных весах типа Доменикали [4]. Максимальная напряженность применяемых магнитных полей была равна 19 kOe.

Электросопротивление и его изменение в магнитном поле $\Delta R/R$, а также эффект Холла, измерялись потенциометрическим методом с помощью потенциометра ППТН-1. Методика измерения эффекта Холла была аналогична описанной в работе Волкенштейна и Федорова [⁵]. Для исключения побочных эффектов измерения производились при двух направлениях магнитного поля и тока в образце. Максимальная напряженность магнитного поля была равна 28 kOe. При измерениях намагниченности и гальваномагнитных эффектов образец ориентировался таким образом, что направление внешнего магнитного поля было параллельно тетрагональной оси монокристалла, следовательно при $T > T_s$ оно совпадало с осью легкого намагничивания.

Удельная термоэлектродвижущая сила соединения Mn_{1,88}Cr_{0,12}Sb определялась относительно меди, при этом направление теплового потока совпадало с тетрагональной осью монокристалла. Знак термоэдс определялся путем сравнения с эталонными образцами, изготовленными из висмута и сурьмы.

Результаты измерений и их обсуждение

На рис. 1 представлены температурные зависимости удельной намагниченности σ , э.д.с. Холла на единицу плотности тока $E_x d/i$ (E_x — измеренная э. д. с. Холла, d — толщина образца, i — ток) и поперечного гальваномагнитного эффекта $\Delta R/R$, измеренные при напряженности магнитного поля 15 kOe; здесь же дана кривая температурной зависимости удельного электрического сопротивления $\rho(T)$. Как видно из приведенных графиков, в области температур 300—330° К наблюдается резкое изменение всех перечисленных характеристик: крутой подъем намагниченности и э. д. с.

¹⁾ Использовались электролитические марганец и хром, обезгаженные в вакууме. Сурьма содержала следующие примеси: $Pb - 1,5 \cdot 10^{-3}\%$; As — меньше $3 \cdot 10^{-3}\%$; Co Ni $- 6 \cdot 10^{-4}\%$; Bi — меньше $4 \cdot 10^{-5}\%$.

Исследование гальваномагнитных свойств

Холла, максимум гальваномагнитного эффекта и уменьшение удельного электрического сопротивления на 24%. Указанная область температур включает в себя температуру магнитного превращения антиферромагнетизм — ферромагнетизм $T_s = 319^{\circ}$ К. (Относительно метода определения T_s будет сказано ниже.) Обращает на себя внимание, что при изменении характера спинового упорядочения меняются не только абсолютные значения гальваномагнитных эффектов $\Delta R / R$ и э. д. с. Холла, но также и их

знаки. При низких температурах, в области существования антиферромагнетизма, $\Delta R / R$ и э. д. с. Холла имеют положительный знак, однако абсолютные величины этих эффектов значительно меньше, чем в ферромагнитном состоянии. Например, при температуре 77° К и напряженности поля 15 kOe $\Delta R / R = 0.8 \cdot 10^{-5}$. При температурах выше T_s , т. е. при наличии ферромагнитного упорядочения спинов, знаки $\Delta R / R$ и э. д. с. Холла отрицательны.

На рис. 2 и 3 представлены изотермы поперечного гальваномагнитного эффекта, измеренные как ниже (рис. 2), так и выше (рис. 3) температуры перехода. На основании этих измерений были получены кривые (рис. 4), характеризующие температурную зависимость поперечного гальваномагнитного эффекта при различных напряженностях внешнего магнитного поля. Здесь так же, как и для обычных ферромагнетиков в точке Кюри, наблюдается максимум $\Delta R / R$ при температуре перехода, однако величина эффекта почти в два раза больше, чем для переходов ферромагнетизм парамагнетизм [⁶] и, кроме того, в данном случае сама температура перехода T_s зависит от напряженности внешнего магнитного поля. Это видно из того, что при увеличении поля наблюдается смещение температуры, при которой достигается максимум $\Delta R / R$. На рис. 5 показано изменение температуры перехода T_s , определенной по максимуму гальваномагнитного эффекта, в зависимости от напряженности магнитного поля, откуда видно,

2 жэтФ, № 12

2029

Рис. 3. Изотермы гальваномагнитного эффекта $\Delta R / R$ при $T > T_s$

Рис. 4. Температурные зависимости гальваномагнитного эффекта при разных значениях напряженности внешнего магнитного поля

что температура превращения антиферромагнетизм — ферромагнетизм уменьшается с полем. Экстраполяция полученной прямой к нулевому полю дает возможность определить истинную температуру перехода $T_s = 319 +$ ± 0.5° К. Смещение T_s под действием магнитного поля при этом равно:

$$dT_s / dH = (-0.33 \pm 0.04) \cdot 10^{-3} \text{ cpad} \cdot \text{Oe}^{-1}$$
.

Необходимо отметить, что полученное значение dT_s/dH соответствуст обратному значению величины dH_n / dT . характеризующей изменение пороговога поля H_n , приводящего к разрушению антиферромагнитного состояния, с температурой [2].

Результаты измерений эффекта Холла приведены на рис. 6, из которого видно, что при низких температурах в области существования антиферромагнетизма э. д. с. Холла линейно зависит от напряженности внешнего магнитного поля только до температуры 154° K. В интервале температур 154—280° К указанная выше линейная зависимость нарушается, а при температурах 283 и

292° К меняется знак эффекта с увеличением напряженности магнитного поля. В области существования ферромагнитного упорядочения спиновых магнитных моментов, т. е. при T > T_s, зависимость разности потенциалов

Рис. 6. Изотермы э.д.с. Холла

Холла от напряженности магнитного поля такая же, как у обычных ферромагнетиков. В этом случае, как известно, поле Холла можно представить в виде суммы двух членов, один из которых пропорционален напряженности магнитного поля, а второй намагниченности. Основное внимание при исследовании эффекта Холла в этой области температур $(T > T_s)$ мы обращали на исследование спонтанного коэффициента Холла R_s , который вычислялся из соотношения $R_s = (E_s d / i) / \sigma_s$, где $E_s d / i$ — спонтанная э. д. с. Холла, определенная экстраполяцией к нулевому полю линейной части кривых $E_x d / i (H)$ при больших значениях поля. Спонтанная намагниченность σ_s определялась как намагниченность насыщения образца при данной тем-

пературе. При рассмотрении вычисленных значений R_s обращает на себя внимание большая величина спонтанной постоянной Холла. Так, например, при температуре $T / \Theta_f = 0,605$ для $Mn_{1,88}Cr_{0,42}Sb$ $R_s = 547 \cdot 10^{-10} \text{ V} \cdot c/\text{A} \cdot \text{G} \cdot cm^2$, а для никеля $R_s = 6,8 \cdot 10^{-10} \text{ V} \cdot c/\text{A} \cdot \text{G} \cdot cm^{22}$. Температурная зависимость R_s соединения $Mn_{1,88}Cr_{0,42}Sb$ показана на рис. 7, из которого видно, что R_s растет с увеличением температуры. Этим объясняется возрастание э. д. с. Холла в области $T > T_s$, когда намагниченность начинает падать с ростом температуры.

Из графиков, приведенных на рис. 6, видно, что полевые постоянные эффекта Холла R_s и R₀ имеют разные знаки: R_s — отрицательна, а R₀, или «обыкновенная» константа Холла, определенная по наклону кривой $E_x(H)$ в области сильных полей, имеет положительный знак. Таким образом, можно было бы полагать, что основным типом носителей электрического тока в соединении Mn_{1.88}Cr_{0.42}Sb являются дырки. Этот вывод совпадает с выводом недавно опубликованной работы [7], в которой производились измерения эффекта Холла только при комнатной температуре двух образцов соединения $Mn_{2-x}Cr_xSb$ различного химического состава ($x_1 = 0$ и $x_2 = 0,16$). Поскольку температура превращения зависит от содержания хрома, один из образцов при температуре измерения был в ферромагнитном, а другой — в антиферромагнитном состоянии. На основании определения константы Холла антиферромагнитного образца и полевой постоянной R₀ ферромагнитного образца был сделан вывод о том, что с изменением характера спинового упорядочения в этих соединениях знак и число носителей электрического тока остаются неизменными. Однако полученные нами данные указывают на то, что э.д.с. Холла в соединениях Mn_{2-x}Cr_xSb сложным образом зависит от температуры и поля: меняется знак эффекта не только с температурой, но и с полем, наклон кривых $E_x(H)$ в антиферромагнитной области изменяется с ростом температуры, поэтому по измерениям эффекта Холла, проведенным только при одной температуре, как это делается в цитируемой работе Бирштедта [7], нельзя сделать однозначных выводов о типе и числе носителей тока при переходе антиферромагнетизм — ферромагнетизм. Кроме того, как уже неоднократно указывалось в литературе [8, 9], определение R₀ по тангенсу угла наклона $E_x(H)$ в сильных магнитных полях не всегда может быть использовано при исследовании эффекта Холла в ферромагнетиках, так как при этом не учитывается влияние парапроцесса.

²⁾ Все приведенные в настоящей работе данные получены при измерении одного и того же образца. Измерения на других образцах, вырезанных из этого же монокристалла, показали, что характер температурных и полевых зависимостей всех исследованных параметров сохраняется неизменным, однако их абсолютные значения меняются в зависимости от образца. Эти изменения равны: $\rho \sim 30\%$, $\sigma \sim 10\%$ и $R_s \sim 18\%$ и связаны, по-видимому, с неравномерным распределением хрома в сплаве.

Для того чтобы получить сведения относительно типа основных носителей тока независимым путем, мы исследовали температурную зависимость удельной термоэлектродвижущей силы а соединения Mn_{1,88}Cr_{0,12}Sb в интервале температур 220—380° К. Эти данные представлены на рис. 8, откуда видно, что термоэлектрические свойства, так же как и все другие исследованные нами в настоящей работе физические свойства, в области температуры магнитного превращения испытывают аномалию, которая по своему характеру аналогична аномальному изменению удельного электрического сопротивления и связана с уменьшением термоэдс при переходе антиферромагнетизм — ферромагнетизм. Однако знак

Рис. 8. Температурная зависимость удельной термоэлектродвижущей силы

термоэдс не положительный, как следовало бы ожидать на основании определения R_0 , а отрицательный во всем исследованном интервале температур, т. е. и в ферро- и в антиферромагнитном состоянии. В связи со сказанным выше можно полагать, что разные знаки R_0 и а в ферромагнитном состоянии образца обусловлены ошибками в определении R_0 за счет того, что не учитывался парапроцесс. Однако объяснить расхождение знаков R_0 и а в области низких температур, т. е. в антиферромагнитном состоянии, представляется затруднительным, что, в свою очередь, не позволяет сделать окончательного вывода о характере основных носителей электрического тока в этом соединении.

Значительное изменение удельной термоэлектродвижущей силы при превращении указывает на то, что изменение магнитной структуры соединения сопровождается изменением концентрации носителей электрического тока, которое обусловлено изменением степени локализации d-электронов. Основанием для такого предположения служат также результаты нейтронографических исследований [3], согласно которым установлено, что при магнитном фазовом переходе в соединениях Mn_{2-x}Cr_xSb изменяются величины магнитных моментов MnI и MnII, занимающих различные кристаллографические положения. В антиферромагнитном состоянии $(T < T_s)$ значения магнитных моментов MnI и MnII соответственно равны 1,4 и 2,8 µв. При переходе в ферромагнитное состояние $(T > T_s)$ магнитный момент MnI увеличивается на 0,4, а магнитный момент MnII уменьшается на 0,5 µв. Таким образом, увеличение электропроводности в ферромагнитном состоянии может быть связано не только с увеличением подвижности (за счет того, что рассеяние на ферромагнонах меньше, чем рассеяние на антиферромагнонах), но также и с увеличением числа носителей электрического тока, что сказывается на таких кинетических эффектах, как электропроводность и термоэдс.

В связи с этим получает простое объяснение наличие отрицательного температурного коэффициента электросопротивления в температурном

интервале $340-330^{\circ}$ К, включающем температуру превращения T_s . Поскольку превращение не происходит полностью в одной температурной точке T_s , а размыто по температурному интервалу примерно на 20° , то вполне естественно предположить, что возникновение полупроводникового характера проводимости в районе T_s обусловлено наличием гетерофазного состояния и не связано с возникновением щели в электронном энергетическом спектре вещества при его переходе из антиферромагнитного в ферромагнитное состояние. Уменьшение электрического сопротивления с ростом температуры в районе T_s вызвано увеличением количества ферромагнитной фазы, имеющей значительно бо́льшую электропроводность, чем антиферромагнитная фаза.

Разный характер температурных и полевых зависимостей гальваномагнитных эффектов в ферро- и антиферромагнитной областях при одном и том же типе кристаллической структуры указывает на существенное значение для этих эффектов характера спинового упорядочения.

В заключение необходимо отметить, что аналогичный характер элекгрических и гальваномагнитных свойств, а также их аномалии проявляются в большой группе редкоземельных металлов при магнитном превращении в точке Θ_2 , в которой происходит переход из геликоидального антиферромагнитного состояния в парамагнитное [10].

Институт физики металлов Академии наук СССР Поступила в редакцию 24 апреля 1964 г.

Литература

[1] T. J. Swoboda, W. H. Cloud, T. A. Bither. Phys. Rev. Lett., 4, 509, 1960.

[2] R. B. Flippen, F. J. Darnell. J. Appl. Phys., 34, 1094, 1963.

[3] W. H. Cloud, H. S. Jarret. Phys. Rev., 120, 1969, 1960.

[4] C. A. Domenicali. Rev. Sci. Instr., 21, 327, 1950.

[5] Н. В. Волкенштейн, Г. В. Федоров. ФММ, 2, 377, 1956.

[6] Н. П. Гражданкина, Л. Г. Гайдуков. ЖЭТФ, 40, 433, 1961.

[7] P. E. Bierstedt. Phys. Rev., 132, 669, 1963.

- [8] К. П. Белов, Е. П. Свирина. ЖЭТФ, 37, 1212, 1959.
- [9] В. Н. Новогрудский, А. А. Самохвалов, И. Г. Факидов. ФММ, 8, 834, 1959.

[10] К. П. Белов, Р. З. Левитин, С. А. Никитин. УФН, 82, 448, 1964.

INVESTIGATION OF THE GALVANOMAGNETIC PROPERTIES OF Mn_{1.88}Cr_{0.12}Sb DURING

THE ANTIFERROMAGNETISM — FERROMAGNETISM TRANSFORMATION

N. P. Grazhdankina

Results of an experimental investigation of the temperature dependences of the electric resistance, specific e.m.f. and also of the temperature and field dependences of the galvanomagnetic effect $\Delta R/R$ and the Hall effect are presented. The measurements were performed on a single crystal of $Mn_1 \cdot {}_{88}Cr_0 \cdot {}_{12}Sb$ in the temperature range from 77 to 380° K including the antiferromagnetism — ferromagnetism transition temperature T_s . It is found that all characteristics enumerated above undergo a sharp change during the transformation. The value $dT_s/dH = (-0.33 \pm 0.04) \cdot 10^{-3}$ degree $\cdot 0e^{-1}$ is derived from the shift of the maximum of the effect $\Delta R/R$ with variation of the field. The different character of the temperature and field dependences of the galvanomagnetic effects in the ferro- and antiferromagnetic regions for a given type of crystal structure indicates that the magnetic structure of matter plays an importhant role in these effects.